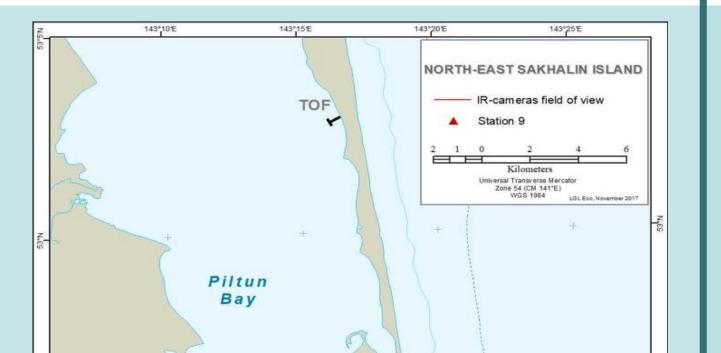
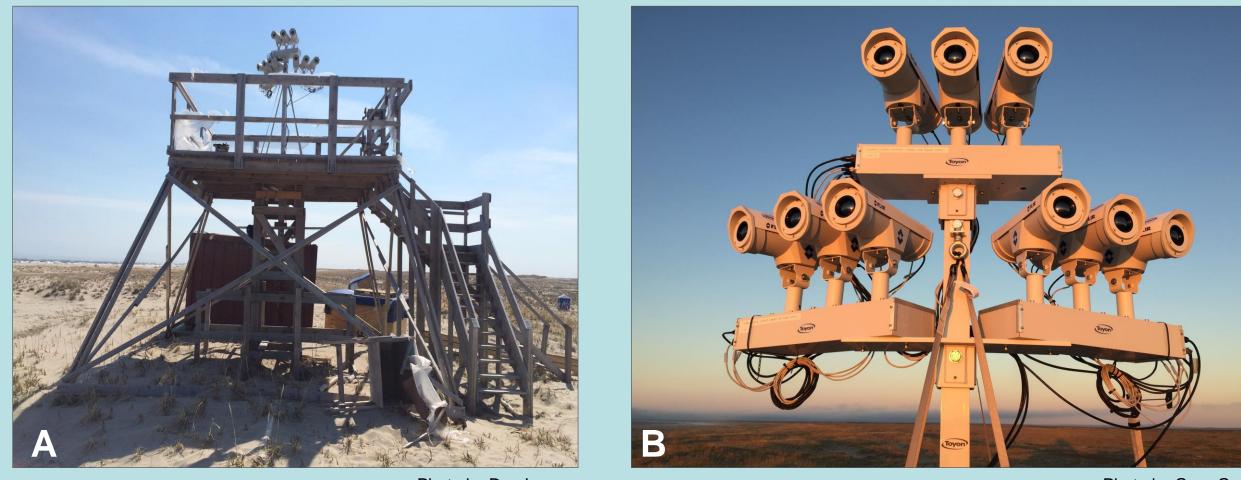
Auto-Detection of Gray Whales (Eschrichtius robustus) Off Sakhalin Island, Russia Using Shore-Based Infrared

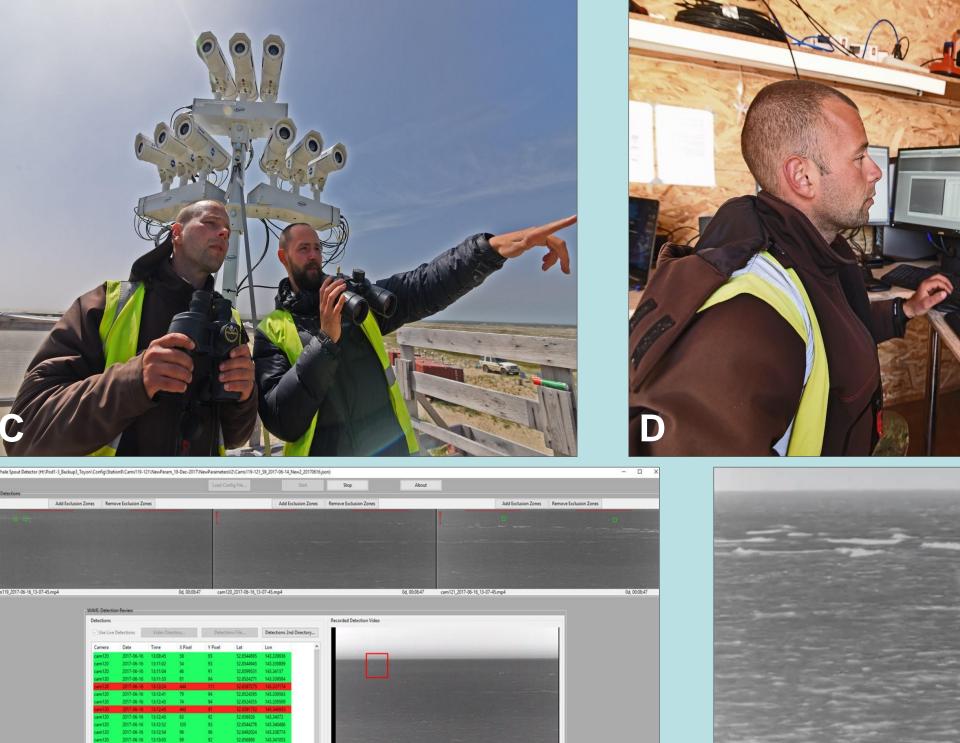
Christina Tombach Wright¹, Jon Waltman¹, Kevin Sullivan¹, David Palandro², Michael Scott³, Ervin Kalinin³, Dave Bourquin¹, Greg Grant¹, Dan Loman¹

¹ Toyon Research Corporation, 6800 Cortona Dr., Goleta, CA 93117, USA. e-mail: ctombach@CTWwildlife.com

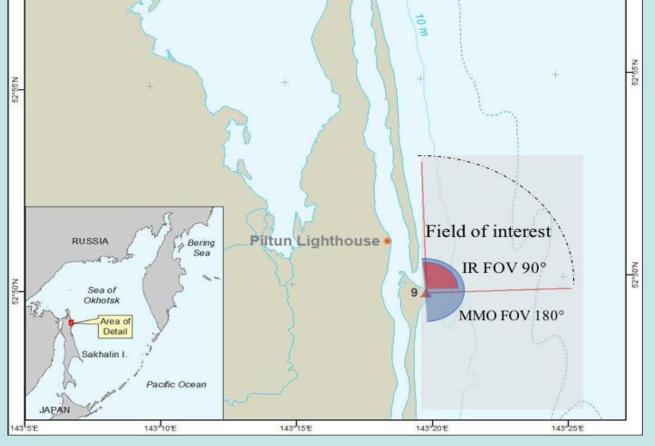
- ² Exxon Mobil Corporation, 22777 Springwoods Village Parkway, Spring, TX, 77389, USA
- ³ Exxon Neftegas Limited, 28 Sakhalinskaya Street, Yuzhno-Sakhalinsk, 693000, Russia


Photo by Peter van der W


Introduction


Whale Detection System

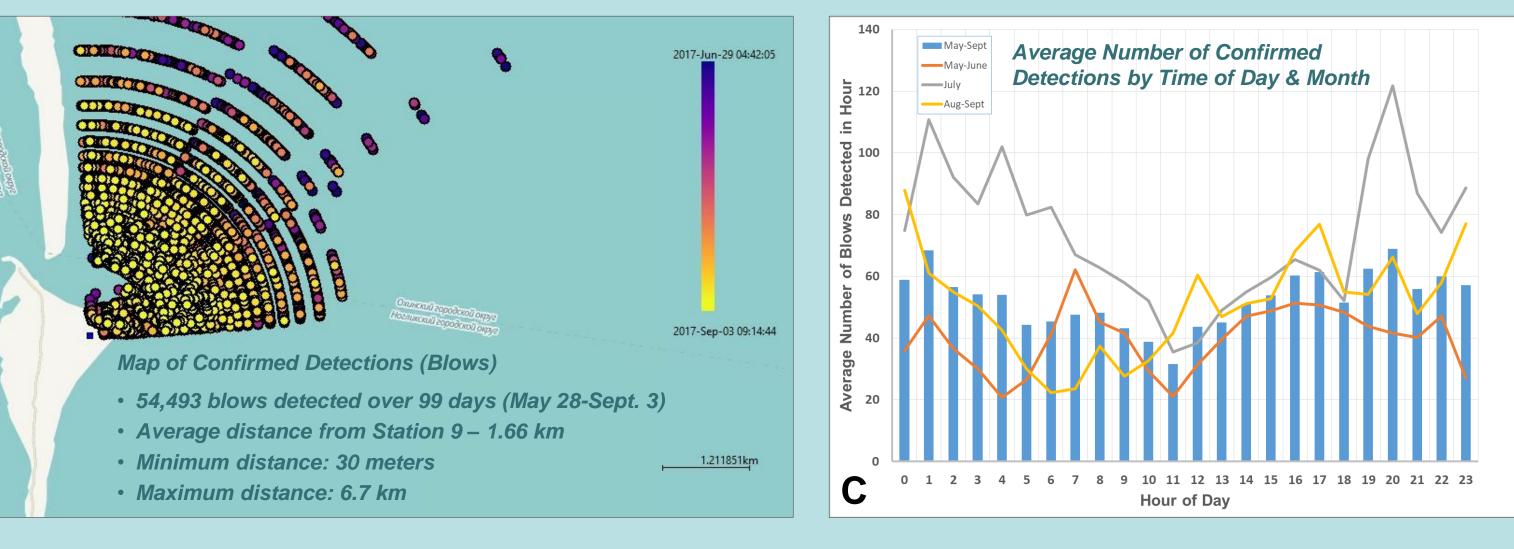
In 2017, a 28 km² section of the gray whale (*Eschrichtius robustus*) Sakhalin nearshore feeding area at the mouth of Piltun Bay, Russia (Fig.1), was monitored for more than three months using a shore-based infrared automated whale detection system (WDS).


The WDS was comprised of nine thermal cameras that covered a 90° field of view (FOV) and displayed whale blows on screen for real-time viewing during the day or night. Long-wave infrared video data were collected 24 hours/day for 98 days (May 28-Sept 3). Each camera has a horizontal 10° FOV providing a 90° contiguous FOV. The cameras were mounted 2m above the observation platform, 6m above sea level which provided an effective detection range of 5-7km. The video feed from the cameras was streamed live to three desktop computer systems running the WhaleSpoutDetector software. The computers were located in a field laboratory adjacent to the observation platform. The software provided real-time detection results presenting MMOs on-site with putative whale blows to confirm or deny. The confirmed detections were logged and tracked to provide researchers with real-time locations of the whale blows. The MMOs were stationed on the platform with the cameras during daylight hours and conducted independent, systematic hourly scans of the area to record whale sightings and weather conditions, including sea state and visibility.

Map of study area around Station 9, off Sakhalin Island, Russia

Photo by Dan Loman

Photo by Greg Grant


A. The observation platform and lab at Station 9. **B.** The nine-camera WDS covering a 90° FOV. **C.** The MMOs stationed on the platform. **D.** Inside the lab where the three computers processed the live streaming video. E. Screenshot of the user interface for the WhaleSpoutDetector software. Along the top, the software displays the live streaming video for a set of three cameras. The lower left displays a log of putative blows. As each detection is selected a short 8-second video clip is played on the right. The user can quickly review the clip and confirm (highlighted green) or deny (highlighted red) each detection in the log. Confirmed detections are then saved into a separate output file. **F.** An example of an auto-detected whale blow is indicated by the red box. In this image there are simultaneous blows from two gray whales. The 2nd blow was captured in a subsequent detection by the system.

Results

A total of 54,493 whale blows were detected by the system. An average of 30-70 blows were detected each hour during the study period, with detections occurring at all hours of the day. The average hourly number of blows was lowest from late morning to midday (0900-1300) and peaked from late afternoon to early morning (1600-0200). The effective detection distance for the WDS was 5-6 km. The average whale distance was 1.66 km which is consistent with the whales' utilization of the nearshore foraging area. As expected from historical distribution studies of the area, the maximum number of detections occurred in July when mothers return to the area with their calves. Successful monitoring was weatherdependent. Dense fog prevented detections, but whale blows were detected by the WDS during periods of light fog, rain and high sea state (\geq Beaufort 4-5) that marine mammal observers declared as poor visibility.

	MMO Whale Counts 11Jun-11July															WDS Confirmed Blows 11Jun-11July																																
Dete		Time of Day (hr)														Dete										Tim	e of	Day	(hr))										Da								
Date	0	1	2 3	3 4	5	6	7	7 8	8	9 1	10 [·]	11	12	13 1	14 1	5 1	6 1	7	18 '	19 2	20 2	1 22	23	Date	0	1	2	3	4	5 (5 7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	
11-Jun										3	1		1		2	2	3	2	2	3	4			11-Jun						2	2 19) 9	69	80	64	85	114	116	113	79	70	72	72	57	73	54	22	11
12-Jun							2	2 1	1	2	2		1	1				8	3	4	5			12-Jun	79	105	113	32		21 1	3 39) 10		9	4			24	85	173	209	148	144	153	128	132	116	6 17
13-Jun							1	1 2	2	1	1	1	2	3	5	3	3	4	5					13-Jun				77 4	45	54 5	5	18	1		17	40	59	65	92	160		68						9
14-Jun										4	2	2	1	2	3	4	4	3	6	4	3			14-Jun								149	92	72	52	8	33	32	61	103		125	182	215	201	144	57	1
15-Jun							1	1	1	3	2	4	2	3	7	1								15-Jun	17	2	18	23	8	1					1				50	18	51	55	45	44	20	67	43	
16-Jun							9) 1	1	7														16-Jun	36				65 ·	109 19	4 217	7 218	3 193	113	85	126	110						54	28	24	25	2	2
17-Jun																		1	3	4	4			17-Jun			18														15		32	50	83	78	23	
18-Jun																								18-Jun	58	10											1	8										\top
19-Jun								4	4	1	3	3	3	0	6	0	2	3	4	2	5			19-Jun										1	4	3	4			31	38	17	1		1	12	24	
20-Jun							4	1 2	2	3	3	3	2	1	0	3	3	2	2	3	2			20-Jun	16					35 4	1						43	129	50	35	15	30	33	30	5		18	_
21-Jun																								21-Jun	87	72	23	28 2	23	6							5		5	7		2	3	18	34	11	47	'
22-Jun							0)																22-Jun					10	8					8	8			61	11				16	15	34	12	_
23-Jun							2	2 1	1	1	4	3	1	0	0	2	0							23-Jun						8	3 1			28						32	1	4	8	20	8	4	1	\top
24-Jun							4	1 7	7	4				4	4		1	4						24-Jun	19	17	7		4	6 2	3 57	/ 8	4		15	9	17	35	28	7	1	1					16	_
25-Jun							0		1	1	2	1	2	2			0	1	1	1	1			25-Jun	5	13	9	7	3		3	5	6	4			23	47	6		1	19	32	32	22	22	19	_
26-Jun																	2	3	5	3	2			26-Jun		32									31	67	88	56	118	124	104		4	12	1	1		\top
27-Jun																								27-Jun		10					30) 9			1	13		15		34		1		26	6	6		\top
28-Jun											2	4	3											28-Jun										15	3		14	14				55	99		59	29	31	
29-Jun							5	5 8	8	6	5		_	4									1	29-Jun	114	149	78	60 3	35	60 20	4 23	5 50	16		1													1
30-Jun						+												4	4	3	2	+	+	30-Jun																								+
1-Jul					1	+				+												+	+	1-Jul										1												62		+
2-Jul				+	+	+		+		+		2	3	4								+	+	2-Jul	+								1	+	5	89	138	99	231	101	5	114	150	145	134		241	1 1
3-Jul				+	+	+	4	1 4	4	4	4	1			+	+	+		-	-		+	+	3-Jul	343	431	344	286 3	310 3	277 20	4 133	3 132	2 157	225				27			2				14	1	2	_
4-Jul					+	+	4	1 3	3	2	3	3	-		-	+	+		3	+			<u> </u>	4-Jul	11							1		6	9				-	39	_	2	18	103		93	86	_
5-Jul					+	+	<u> </u>	_	2	3	1		3	4	9	6	7		6	7			1	5-Jul	_		48	55	18	28	1	-	7	5	-		20	72	51	105		47	37	12	34		31	_
6-Jul					+	+	8	_	_	0	6	7	-	-					-		11		+	6-Jul						113 19	2 13	9 149	156	125	17	19				_	-						105	_
7-Jul					+		6		4	2	4	3	5						6	6			+	7-Jul		96	80	63 4	43	12	2	5	15	2	3	10	15	41	69	28	39	8					25	
8-Jul										4			3	2	5	3	4			_	4		+	8-Jul	10	38	29	37	14		+-	1		-	-	14	2	2	33	103	137	92	50	87	1	46	4	-
9-Jul					+	+	+	_	_	-		3			_	_	_		7		12		1	9-Jul	4	46	3	72 3	20	65 3	4	77	15		15										52			
10-Jul				+	-	+	3	_	4	_					6		-			10		+	+	10-Jul	148	142	104	74	17	37 6	2 47						29	86	106	172	71	29	75		114			
11-Jul				+	+	+	_	5 -	_	_	_		-	3	-		-	-	-	-		+	+	11-Jul	85	81	63	53 3	30	77 13	3 64						46	104	12	87	32	16	0	21	12	2		1

13%

Percentage of Total Detected Whale

Blows for Each Camera

Aug 4th Midnight to 1am

354 Confirmed Blows

m122 110 m

The MMO and WDS Summary data for the peak month of good visibility from 11 Jun to 11 July 2017. The MMOs conducted a scar at the top of each hour between 0700 and 2000 and reported whale counts and weather conditions. The WDS collected data 24 hrs/day. WDS data is summarized as hourly counts of confirmed whale blows including many detections during fog and Beaufort Sea States \geq 4, when MMOs were off effort due to poor conditions. The infrared cameras cannot penetrate fog, but the detector "looks" indiscriminately for whale blows and can take advantage of quickly changing weather conditions, i.e. as fog rolls in and out.

A. Map of blows detected by the Whale Detection System over 98 days, darker points indicate older data, lighter indicate newer detections. **B.** The percentage of total whale blows over the season detected for each camera. **C.** The total number of detections broken down by time of day. D. An example of 1 hour of data: A total of 345 confirmed blows were detected on August 4 from midnight to 1 am. The clustering of the blows shows individual whale foraging behavior. By considering time and distance differences between blows, it is estimated that there were 6-8 individual whales in the area during this hour.

Conclusions

• Shore-based automated infrared detection systems are useful long-term day and nighttime monitoring of nearshore whale presence.

Α

Β

- Neither MMOs nor WDS can detect whales in extreme weather conditions (fog, rain, high seas), but the WDS can detect whales in some marginal conditions during which MMOs cannot. The WDS can also detect whales at night.
- Individual whales can be identified by the WDS by clustering blows in space and time and by considering appropriate respiration rates and travel velocities.

